Combinatorial interpretation of Haldane-Wu fractional exclusion statistics

A. K. Aringazin and M. I. Mazhitov
Department of Theoretical Physics, Institute for Basic Research, Eurasian National University, Astana 473021, Kazakhstan

(Received 16 February 2002; published 26 August 2002)

Abstract

Assuming that the maximal allowed number of identical particles in a state is an integer parameter, q, we derive the statistical weight and analyze the associated equation that defines the statistical distribution. The derived distribution covers Fermi-Dirac and Bose-Einstein ones in the particular cases $q=1$ and $q \rightarrow \infty$ $\left(n_{i} / q \rightarrow 1\right)$, respectively. We show that the derived statistical weight provides a natural combinatorial interpretation of Haldane-Wu fractional exclusion statistics, and present exact solutions of the distribution equation.

DOI: 10.1103/PhysRevE.66.026116
PACS number(s): 05.30.Pr

I. INTRODUCTION

Statistics that are different from Fermi-Dirac and BoseEinstein ones become of much interest in various aspects. A recent example is given by Haldane-Wu fractional exclusion statistics [1,2], which is used to describe elementary excitations of a number of exactly solvable one-dimensional models of strongly correlated systems, and other models [2,3]. This statistics is based on the statistical weight, which is a generalization of Yang-Yang [4] state counting as mentioned by Wu,

$$
\begin{equation*}
W_{i}=\frac{\left[z_{i}+\left(n_{i}-1\right)(1-\lambda)\right]!}{n_{i}!\left[z_{i}-\lambda n_{i}-(1-\lambda)\right]!}, \tag{1}
\end{equation*}
$$

where the parameter λ varies from $\lambda=0$ (Bose Einstein) to $\lambda=1$ (Fermi Dirac). This formula is a simple generalization and interpolation of Fermi and Bose statistical weights. While there is no physical meaning ascribed to λ here, the physical interpretation of Eq. (1) is that the effective number of available single-particle states linearly depends on the number of particles,

$$
\begin{equation*}
z_{i}^{f}=z_{i}-(1-\lambda)\left(n_{i}-1\right), \quad z_{i}^{b}=z_{i}-\lambda\left(n_{i}-1\right) \tag{2}
\end{equation*}
$$

for fermions and bosons, respectively. This is viewed as a defining feature of the fractional exclusion statistics.

In the present paper, we show that the equation that defines Haldane-Wu statistical distribution can be derived from a different statistical weight, which has a clear combinatorial and physical treatment. Also, we present exact solutions of this equation.

II. THE COMBINATORICS

A number of quantum states of n_{i} identical particles occupying z_{i} states, with up to q particles in state, $1 \leqslant q \leqslant n_{i}$, can be counted as follows.

We consider a configuration defined as that it has a maximal possible number of totally occupied states (exactly q particles in state). A number of such totally occupied states is an integer part of n_{i} / q that we denote by $\left[n_{i} / q\right]$. If q is a divisor of n_{i} we have identically $\left[n_{i} / q\right]=n_{i} / q$, so that the number of unoccupied states is $z_{i}-\left(n_{i} / q\right)$. If q is not a divisor of n_{i} we have one partially occupied state, so that the
number of unoccupied states is $z_{i}-\left(n_{i} / q\right)-1$. We write a combined formula of the statistical weight for both the cases as

$$
\begin{equation*}
W_{i}=\frac{\left(z_{i}+n_{i}-\left[\frac{n_{i}}{q}\right]\right)!}{n_{i}!\left(z_{i}-\left[\frac{n_{i}}{q}\right]-l\right)!} \tag{3}
\end{equation*}
$$

where $l=0$ or 1 if n_{i} / q is an integer or a noninteger, respectively; $i=1,2, \ldots, m$.

In these particular cases, $q=1$ and $q=n_{i}$, we have $\left[n_{i} / q\right]=n_{i} / q$ and $l=0$ so that Eq. (3) reduces to FermiDirac and Bose-Einstein statistical weights, respectively,

$$
\begin{equation*}
W_{i}=\frac{z_{i}!}{n_{i}!\left(z_{i}-n_{i}\right)!}, \quad W_{i}=\frac{\left(z_{i}+n_{i}-1\right)!}{n!\left(z_{i}-1\right)!} . \tag{4}
\end{equation*}
$$

As one can see, the effective number of available singleparticle states derived from Eq. (3),

$$
\begin{equation*}
z_{i}^{f}=z_{i}-n_{i}+\left[\frac{n_{i}}{q}\right], \quad z_{i}^{b}=z_{i}-\left[\frac{n_{i}}{q}\right]+1 \tag{5}
\end{equation*}
$$

for fermions and bosons, respectively, is linear in n_{i} for integer n_{i} / q. With the identification of the parameters, $1 / q$ $=\lambda$, and the redefinition, $z_{i} \rightarrow z_{i}-(1-\lambda)$, the statistical weight (3) coincides with Haldane-Wu statistical weight (1), for the case of integer n_{i} / q. Consequently, the obtained statistical weight (3) corresponds to a kind of fractional exclusion statistics. To verify whether Eq. (3) leads to Haldane-Wu distribution we obtain below the equation that governs statistical distribution.

III. THE DISTRIBUTION FUNCTION

Starting with Eq. (3), we follow usual technique of statistical mechanics to derive the associated most-probable distribution of n_{i}.

The thermodynamical probability is $W=\Pi W_{i}$, and the entropy, $S=k \ln W$, can be calculated by using the approximation of big number of particles, $n!\simeq n^{n} e^{-n}$ for big n. Assuming conservation of the total number of particles, N $=\sum n_{i}$ and the total energy, $E=\sum n_{i} \varepsilon_{i}$, variational study of S corresponding to an equilibrium state gives us

$$
\begin{align*}
\delta S= & k \sum_{i}\left[\left(1-\frac{1}{q}\right) \ln \left(n_{i}+z_{i}-\frac{n_{i}}{q}\right)-\ln n_{i}\right. \\
& \left.+\frac{1}{q} \ln \left(z_{i}-\frac{n_{i}}{q}\right)-\alpha-\beta \varepsilon_{i}\right] \delta n_{i}=0, \tag{6}
\end{align*}
$$

where α and β are Lagrange multipliers, and we have used $\left[n_{i} / q\right] \simeq n_{i} / q$ and $l=0$ for big n_{i}. Using the notation κ $=1 / q$ and inserting $\alpha=-\mu / k T$ and $\beta=1 / k T$ (obtained via an identification of S, at $q=1$, with the thermodynamical expression), we rewrite Eq. (6) as

$$
\begin{equation*}
\frac{\left[z_{i}+(1-\kappa) n_{i}\right]^{1-\kappa}\left(z_{i}-\kappa n_{i}\right)^{\kappa}}{n_{i}}=\exp \frac{\varepsilon_{i}-\mu}{k T} \tag{7}
\end{equation*}
$$

$\kappa=1, \frac{1}{2}, \frac{1}{3}, \ldots$ To draw parallels with Haldane-Wu statistics below we make analytic continuation of the discrete parameter κ assuming $\kappa \in[0,1]$. Under this condition, the derived distribution Eq. (7) does reproduce that of Haldane-Wu fractional exclusion statistics [Eq. (14) of Ref. [2]], with $\kappa=\lambda$.

Below, we turn to consideration of properties and exact solutions of Eq. (7).

In general, Eq. (7) cannot be solved exactly with respect to n_{i}. However, for $\kappa=1$ and $\kappa \rightarrow 0\left(\kappa n_{i} \rightarrow 1\right)$, it becomes linear in n_{i} and gives Fermi and Bose distributions, respectively. Also, we note that for $\kappa=1 / 2,1 / 3$, and $1 / 4$ the equation contains a polynomial of degree up to 4 so that it can be solved exactly for all these cases.

A convenient expression for n_{i} obeying Eq. (7) is given by [2]

$$
\begin{equation*}
n_{i}=\frac{1}{w(x)+\kappa} \tag{8}
\end{equation*}
$$

where we have redefined, $n_{i} / z_{i} \rightarrow n_{i}, x \equiv \exp \left[\left(\varepsilon_{i}-\mu\right) / k T\right]$, and the function $w(x)$ satisfies

$$
\begin{equation*}
(1+w)^{(1-\kappa)} w^{\kappa}=x \tag{9}
\end{equation*}
$$

Remarkably, exclusons that are "close" to fermions can be described in terms of exclusons that are "close" to bosons. In fact, we note that Eq. (7) is invariant under a set of transformations,

$$
\begin{equation*}
\kappa \rightarrow 1-\kappa, \quad n_{i} \rightarrow-n_{i}, \quad x \rightarrow-x \tag{10}
\end{equation*}
$$

for $\kappa \neq 0,1$. Therefore, if $n_{i}(x, \kappa)$ satisfies Eq. (7) then the function $m_{i}=-n_{i}(-x, 1-\kappa)$ satisfies the same equation. Thus, we obtain the following general relation:

$$
\begin{equation*}
n_{i}(-x, 1-\kappa)=-n_{i}(x, \kappa), \quad \kappa \neq 0,1 . \tag{11}
\end{equation*}
$$

We see that, e.g., the distribution n_{i} of exclusons for κ $=1 / 200 \simeq 0$ can be obtained from that of "dual" exclusons, with $\kappa=1-1 / 200=199 / 200 \simeq 1$.

The values $\kappa=1$ and $\kappa \rightarrow 0\left(\kappa n_{i} \rightarrow 1\right)$ are the only two points of degeneration of Eq. (7). Hence, any "deviation" from Fermi or Bose statistics is characterized by a sharp change of statistical properties, sending us to consideration of exclusons. Consequently, we can divide particles into
three main types, genuine fermions, genuine bosons, and exclusons ($\kappa \in] 0,1[$), since their statistical distributions obey different nondegenerate equations.

A fixed point of the map $\kappa \rightarrow 1-\kappa$ is $\kappa=1 / 2$. Hence it represents a special case worth to be considered separately. In this case, Eq. (7) allows an exact solution and the result is (positive root) [2]

$$
\begin{equation*}
n_{i}=\frac{2}{\sqrt{1+4 x^{2}}}=\frac{2}{\left(1+4 \exp \frac{2\left(\varepsilon_{i}-\mu\right)}{k T}\right)^{1 / 2}} \tag{12}
\end{equation*}
$$

This distribution represents statistics with up to two particles in state, $q=2$ (semions).

We have obtained exact solutions (real roots) of Eq. (7) for $\kappa=1 / 3$ and $2 / 3$ which we write as

$$
\begin{equation*}
n_{i}=\frac{3}{f+f^{-1} \mp 1} \tag{13}
\end{equation*}
$$

where

$$
\begin{equation*}
f=[2 \sqrt{y(y \mp 1)}+2 y \mp 1]^{1 / 3}, \quad y=2\left(\frac{3 x}{2}\right)^{3} \pm 1 \tag{14}
\end{equation*}
$$

From Eqs. (13) and (14) one can see how exclusons with κ $=1 / 3$ (upper sign) are related to exclusons with $\kappa=2 / 3$ (lower sign) that agrees with Eq. (11). Also, for $\kappa=1 / 4$ and $3 / 4$ we have obtained the following exact solutions (positive real roots):

$$
\begin{equation*}
n_{i}=\frac{4}{\sqrt{2 g^{-1 / 2}-g+3} \pm g^{1 / 2} \mp 2} \tag{15}
\end{equation*}
$$

where

$$
\begin{gather*}
g=\frac{3}{2}\left\{\left[z^{2}(z+2)\right]^{1 / 3}+\left[z(z+2)^{2}\right]^{1 / 3}\right\}+1, \tag{16}\\
z=\sqrt{3\left(\frac{4 x}{3}\right)^{4}+1}-1 . \tag{17}
\end{gather*}
$$

Plots of $n_{i}(x)$ for various κ are presented in Fig. 1, from which one can see that these exclusons behave similar to fermions.

Distributions of exclusons can be obtained from a different approach, based on the canonical statistical sum which implies the mean number of particles,

$$
\begin{equation*}
n=\frac{\sum_{N=0}^{q} N x^{-N}}{\sum_{N=0}^{q} x^{-N}} \tag{18}
\end{equation*}
$$

This formula gives (exact) Fermi and Bose distributions for $q=1$ and $q \rightarrow \infty$, respectively, while for arbitrary $q \geqslant 1$ the sum is

FIG. 1. Statistical distribution n_{i} as a function of $x=\exp \left[\left(\varepsilon_{i}\right.\right.$ $-\mu) / k T$], for $\kappa=1$ (fermions), $\kappa=0$ (bosons), $\kappa=1 / 2$ [semions, Eq. (12)], $\kappa=1 / 3$ [Eq. (13), upper sign], $\kappa=1 / 4$ [Eq. (15), upper sign], $\kappa=2 / 3$ [Eq. (13), lower sign], and $\kappa=3 / 4$ [Eq. (15), lower sign]. Dashed lines represent the approximation (19) to exact solutions (solid lines).

$$
\begin{equation*}
n=\frac{x^{1+q}-(1+q) x+q}{\left(x^{1+q}-1\right)(x-1)}, \quad q=1 / \kappa \tag{19}
\end{equation*}
$$

Distributions (19) are compared with exact solutions in Fig. 1. One can see that deviations become considerable as κ goes to smaller values. However, we expect that near $\kappa=0$ there should be a better correspondence since one approaches the other interpolation end point (bosons). We treat Eq. (19) as an approximate result that is useful since it gives a single simple distribution formula for all exclusons, $\kappa \in[0,1]$.

A connection between the two approaches requires a deeper study which can be made elsewhere.

IV. CONCLUSIONS

(i) The derived statistical weight (3) and Haldane-Wu statistical weight (1) lead to the same distribution Eq. (7);
(ii) Haldane-Wu parameter λ acquires a physical meaning of an inverse of the maximal allowed occupation number in state, $\lambda=1 / q$, similar to the inverse of the statistical factor as shown by Wu [2];
(iii) Within fractional exclusion statistics, the generalized Pauli exclusion principle reads that a maximal allowed occupation number of identical particles in state is an integer, q $=1,2,3, \ldots$, i.e., $n_{i} / z_{i} \leqslant 1 / \lambda$ as formulated by Wu [2]. We stress that in our approach we use this principle as a basis to calculate statistical weight (3) rather than derive it a posteriori from the analysis of a statistical weight or distribution function;
(iv) While Haldane-Wu parameter λ is assumed to vary continuously, the statistical parameter $\kappa=1 / q$ runs over discrete set of values, $\kappa=1,1 / 2,1 / 3, \ldots$ This may be an important difference since physically acceptable solutions of Eq. (7) may not exist for all values of $\kappa \in] 0,1[$, while κ $=1,1 / 2,1 / 3, \ldots$ guarantees a polynomial structure of Eq. (7), with physically acceptable solutions; and
(v) The Eq. (7), that defines statistical distribution of exclusons, $\kappa \in] 0,1[$, has a remarkable symmetry (10) that allows to interconnect solutions n_{i} for κ and $1-\kappa$ due to Eq. (11).

In summary, we have shown that Haldane-Wu fractional exclusion statistics finds a natural combinatorial and physical interpretation in accord to Eq. (3), and presented exact solutions of Eq. (7).
[1] F. D. M. Haldane, Phys. Rev. Lett. 67, 937 (1991).
[2] Y. S. Wu, Phys. Rev. Lett. 73, 922 (1994).
[3] D. Bernard and Y. S. Wu, in Proceedings of the 6th Nankai Workshop, edited by M. L. Ge and Y. S. Wu (World Scientific, Singapore, 1995); C. Nayak and F. Wilczek, Phys. Rev. Lett. 73, 2740 (1994); Z. N. C. Ha, Nucl. Phys. B 435, 604 (1995);
Y. Hatsugai, M. Kohmoto, T. Koma, and Y. S. Wu, Phys. Rev. B 54, 5358 (1996); Y. Yu, H. X. Yang, and Y. S. Wu, e-print cond-mat/9911141; Y. S. Wu, Y. Yu, and H. X. Yang, Nucl. Phys. B 604, 551 (2001).
[4] C. N. Yang and C. P. Yang, J. Math. Phys. 10, 1115 (1969).

