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Combinatorial interpretation of Haldane-Wu fractional exclusion statistics
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Assuming that the maximal allowed number of identical particles in a state is an integer paramneter,
derive the statistical weight and analyze the associated equation that defines the statistical distribution. The
derived distribution covers Fermi-Dirac and Bose-Einstein ones in the particular gasksand q— o
(n;/g—1), respectively. We show that the derived statistical weight provides a natural combinatorial interpre-
tation of Haldane-Wu fractional exclusion statistics, and present exact solutions of the distribution equation.
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[. INTRODUCTION number of unoccupied states zs—(n;/q)—1. We write a
combined formula of the statistical weight for both the cases
Statistics that are different from Fermi-Dirac and Bose-as
Einstein ones become of much interest in various aspects. A
recent example is given by Haldane-Wu fractional exclusion ﬁ} )I
q

statistics[1,2], which is used to describe elementary excita- Zitnm=
tions of a number of exactly solvable one-dimensional mod- Wi= n ' (©)
els of strongly correlated systems, and other mo¢2/3]. n!'l z,— ﬂ_l)!

This statistics is based on the statistical weight, which is a

generalization of Yang-Yang}] state counting as mentioned wherel =0 or 1 if n, /q is an integer or a noninteger, respec-

by Wu, tively; i=1,2,...m.
In these particular casegj=1 and g=n;, we have
. J— — | |
= [+ (ni—D(A=M)]! , (1) [ni/g]=ni/q and1=0 so that Eq.(3) reduces to Fermi-
ni![zi—Ani—(1-N)]! Dirac and Bose-Einstein statistical weights, respectively,
where the parametex varies from\ =0 (Bose Einsteinto z! (z+n;—1)!
A=1 (Fermi Dirad. This formula is a simple generalization Wi:m, T lz-1) (4)
and interpolation of Fermi and Bose statistical weights. R '
While there is no physical meaning ascribeditdere, the As one can see, the effective number of available single-

physical interpretation of Eq1) is that theeffectivenumber  particle states derived from E¢B),
of available single-particle statdmearly depends on the

number of particles, n;

q q

. _ o for fermions and bosons, respectively, is lineanjnfor in-

for fermions and bosons, respectively. This is viewed as aeger n;/q. With the identification of the parameters,q1/
defining feature of the fractional exclusion statistics. =\, and the redefinitionz;—z—(1—\), the statistical

In the present paper, we show that the equation that deweight(3) coincides with Haldane-Wu statistical weigh,
fines Haldane-Wu statistical distribution can be derived fronfor the case of integem; /q. Consequently, the obtained sta-
a different statistical weight, which has a clear combinatoriakistical weight(3) corresponds to a kind of fractional exclu-
and physical treatment. Also, we present exact solutions ofjon statistics. To verify whether Eq(3) leads to
this equation. Haldane-Wu distribution we obtain below the equation that

governs statistical distribution.

f ni
Zi=Zi—ni+

+1 (5)

. =z
Zi=z—(1-N(n—1), Z=z-\n-1) (2

Il. THE COMBINATORICS

. . . Il. THE DISTRIBUTION FUNCTION
A number of quantum states of identical particles oc-

cupying z; states, with up ta particles in state, #£q=<n;, Starting with Eq.(3), we follow usual technique of statis-

can be counted as follows. tical mechanics to derive the associated most-probable dis-
We consider a configuration defined as that it has a maxitribution of n; .

mal possible number of totally occupied statexactly q The thermodynamical probability i8V=IIW,, and the

particles in state A number of such totally occupied states is entropy, S=k InW, can be calculated by using the approxi-
an integer part oh;/q that we denote byn;/q]. If gis a mation of big number of particles! =n"e~" for big n. As-
divisor of n; we have identicallyfn;/q]=n;/q, so that the suming conservation of the total number of particlés,
number of unoccupied statesZs—(n;/qg). If gis not a di- =Xn; and the total energfe ==n;e;, variational study ofs
visor of n; we have one partially occupied state, so that thecorresponding to an equilibrium state gives us
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n; three main types, genuine fermions, genuine bosons, and ex-
0S= kE {(1— —)In(n +zi— q) Inn; clusons e ]0,1[), since their statistical distributions obey
different nondegeneratequations.
A fixed point of the mapxk—1—« is k=1/2. Hence it
on;=0, (6)  represents a special case worth to be considered separately.
In this case, Eq(7) allows an exact solution and the result is

wherea and g are Lagrange multipliers, and we have used(Positive roof [2]
[ni/q]=n;/q and I=0 for big n;. Using the notationk

g
an Z|—a a— Be;

=1/q and insertingae= — u/kT and B8=1/kT (obtained via = 2 _ 2 (12)
an identification ofS, at =1, with the thermodynamical b 1+4x2 2(ei—p) |\ ¥?
expressiol we rewrite Eq.(6) as 1+4 expT
[z+(1—n]" " “Z—xm)* &= n This distribution represents statistics with up to two particles
= exp ; o . :
n; kT in state,q=2 (semions.
We have obtained exact solutiofrieal roots of Eq. (7)
k=133, .... Todraw parallels with Haldane-Wu statistics for x=1/3 and 2/3 which we write as
below we make analytic continuation of the discrete param-
eter k assumingk [ 0,1]. Under this condition, the derived 3
distribution Eq.(7) does reproduc¢hat of Haldane-Wu frac- N :m' (13

tional exclusion statistickEq. (14) of Ref.[2]], with k=NX\.

Below, we turn to consideration of properties and exaciyhere
solutions of Eq(7). ,

In general, Eq(7) cannot be solved exactly with respect 3x
to n,. However, fork=1 andx—0 (kn;—1), it becomes f=[2\y(y+1)+2y+1]*, y=2(7) +1. (19
linear inn; and gives Fermi and Bose distributions, respec-
tively. Also, we note that foix=1/2, 1/3, and 1/4 the equa- From Egs.(13) and(14) one can see how exclusons with
tion contains a polynomial of degree up to 4 so that it can be=1/3 (upper sign are related to exclusons with=2/3

solved exactly for all these cases. (lower sign that agrees with Eq11). Also, for k=1/4 and
A convenient expression far; obeying Eq.(7) is given  3/4 we have obtained the following exact solutigpssitive
by [2] real roots:
1
_ 4
W0+ ® = (19

2g P—g+3+gl2x2’

where we have redefinedy;/z;—n;, x=exfd(s—u)/KT],

and the functionw(x) satisfies where
— K K _— 3
(L+w)H™we=x. © 0= S{[2(z+2)1P+[2(2+27+1,  (16)
Remarkably, exclusons that are “close” to fermions can
be described in terms of exclusons that are “close” to 4x\*4
bosons. In fact, we note that E) is invariant under a set z=\/3| 3| +1-1 (17

of transformations,

Plots ofn;(x) for variousk are presented in Fig. 1, from
which one can see that these exclusons behave similar to
; i fermions.
for k#0,1. Therefore, ifn;(x,«) satisfies Eq(7) then the L . .
funclf[ion my=—n(—x,1— "<() ga)ltisfies the sc,]a(n:e equation Distributions of exclusons can be obtained from a differ-
Thus. we (Inbtainlthe f’ollowing general relation: " ent approach, based on the canonical statistical sum which
' ' implies the mean number of particles,

k—1—k, nNn—-—-n;, X—>—X (10

ni(—x,1—x)=—n;j(x,x), «#0,1. (11

We see that, e.g., the distributiam of exclusons forx
=1/200=0 can be obtained from that of “dual” exclusons, n=
with k=1-1/200=199/206=1.

The valuesk=1 andk—0 (kn;—1) are the only two
points of degenerationof Eq. (7). Hence, any “deviation”
from Fermi or Bose statistics is characterized by a sharghis formula givesexacy Fermi and Bose distributions for
change of statistical properties, sending us to consideratiop=1 andq—«, respectively, while for arbitrargg=1 the
of exclusons. Consequently, we can divide particles intssum is

(18

pzd
M- M=
X Z
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A connection between the two approaches requires a
deeper study which can be made elsewhere.

IV. CONCLUSIONS

(i) The derived statistical weigli8) and Haldane-Wu sta-
tistical weight(1) lead to the same distribution E¢y);

(i) Haldane-Wu parametar acquires a physical meaning
of an inverse of the maximal allowed occupation number in
state A = 1/qg, similar to the inverse of the statistical factor as
shown by Wu[2];

(iii ) Within fractional exclusion statistics, the generalized
Pauli exclusion principle reads that a maximal allowed occu-
pation number of identical particles in state is an integer,
=1,23...,i.e, n;/zz<1/\ as formulated by WJ2]. We
stress that in our approach we use this principle as a basis to

FIG. 1. Statistical distributiom; as a function ofx=ex((s; calculate statistical weigh®) rather than derive i poste-
—w)/KT], for k=1 (fermiong, =0 (bosony, k=1/2[semions, Eq. riori from the analysis of a statistical weight or distribution
(12)], k=1/3[Eq. (13), upper sigh, «=1/4[Eqg. (15), upper sigi, function;

k=213 [Eq. (13), lower sign, and x=3/4 [Eq. (15), lower sign. (iv) While Haldane-Wu parametex is assumed to vary
Dashed lines represent the approximatidd) to exact solutions continuously, the statistical paramete+ 1/q runs overdis-
(solid lines. creteset of valuesx=1,1/2,1/3, . . . This may be an impor-
tant difference since physically acceptable solutions of Eq.
X1 (14 q)x+q (7) may not exist for all values ofke]0,1, while «
= . g=1/k. (19 =1,1/2,1/3,. .. guarantees a polynomial structure of(Eyg.
(x*9-1)(x—1) with physically acceptable solutions; and

o . ) o (v) The Eq.(7), that defines statistical distribution of ex-
Distributions(19) are compared with exact solutions in Fig. clusons,« <]0,1[, has a remarkable symmet(g0) that al-
1. One can see that deviations become considerable as |ows to interconnect solutions, for x and 1- « due to Eq.

goes to smaller values. However, we expect that nead  (11).

there should be a better correspondence since one approachegn summary, we have shown that Haldane-Wu fractional
the other interpolation end poiibosons. We treat Eq(19) exclusion statistics finds a natural combinatorial and physical
as an approximate result that is useful since it gives a singliterpretation in accord to E¢3), and presented exact solu-

simple distribution formula for all exclusong,e[0,1]. tions of Eq.(7).
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